News
US Commerce Secretary Gina Raimondo has announced on February 5th that the Commerce Department would distribute substantial subsidies to chipmakers investing in the US within the next two months. The subsidy recipients are expected to include companies like TSMC and Intel.
As per a report from Reuters, Raimondo discussed the progress of subsidies under the US CHIPS and Science Act. “We’re in the process of really complicated, challenging negotiations with these companies. In the next six to eight weeks, you will see several more announcements. That’s what we’re striving for,” she stated.
Raimondo did not specify which chipmakers she is negotiating with, but she mentioned in an interview cited by Reuters,”These are highly complex, first-of-their-kind facilities. The kind of facilities that TSMC, Samsung, Intel are proposing to do in the United States — these are new-generation investments — size, scale complexity that’s never been done before in this country.”
Last month, as per Bloomberg cited industry sources in a report, plans for the United States to announce substantial chip subsidies by the end of March are revealed, targeting companies such as TSMC and Intel. The US CHIPS and Science Act reportedly includes a USD 39 billion manufacturing subsidy, providing 15% of the total cost for each independent project. Each fab can receive up to USD 3 billion in subsidies, along with loans, loan guarantees, and tax exemptions.
Read more
(Photo credit: TSMC)
News
China’s leading semiconductor foundry, SMIC International, announced its fourth-quarter financial results on February 6th. While the quarter’s revenue exceeded expectations, a significant drop in gross margin led to a sharp decrease in net profit by less than 50% to below USD 1 billion last year.
SMIC issued a warning, further revising down the gross margin for the first quarter of this year to around 10%, with single-digit figures at the lower end.
During the fourth quarter, SMIC International saw a revenue increase of over 3.5% to more than USD 1.678 billion, marking the only quarter of revenue growth last year. Net profit plummeted by 54.7% to nearly USD 175 million.
The gross margin of 16.4% was almost halved compared to the same period in 2022 and experienced a significant decline from the previous three quarters, reaching its lowest point of the year.
In the full year of 2023, SMIC International experienced a revenue decline of over 13% to USD 6.3 billion, with a net profit decrease of 50.4% to USD 900 million. The gross margin was approximately halved to 19.3%.
Regarding the decline in net profit, SMIC cited various factors including the industry downturn, weak market demand, high industry inventory, and fierce competition among peers, all contributing to reduced capacity utilization and decreased wafer shipment for the group.
Additionally, the group experienced a period of high investment during the financial reporting period, leading to increased depreciation compared to the previous year.
Looking ahead to the first quarter of this year, SMIC estimates a quarter-on-quarter revenue growth of up to 2%. For the first-quarter gross margin guidance, SMIC has provided a range of 9% to 11%, indicating a decrease of approximately 33% to 45% from the low point of 16.4% in the fourth quarter of last year.
SMIC also anticipates that, under the assumption of no significant changes, this year’s revenue growth will not be lower than the average of comparable peers, showing a mid-single-digit increase compared to last year. The capital expenditure scale is expected to remain roughly flat compared to last year.
The significant downward revision in gross margin guidance has drawn attention to SMIC’s strategic moves. According to a report by the Financial Times, SMIC is intensifying its collaboration with Huawei by establishing a new production line in Shanghai dedicated to producing chips for Huawei’s future flagship smartphones, focusing on the 5-nanometer process.
However, industry sources cited by the report have also indicated that SMIC’s prices for 5-nanometer and 7-nanometer processes are 40% to 50% higher than TSMC’s, and the yield less than one-third of TSMC’s.
Read more
(Photo credit: SMIC)
Insights
According to the latest spot prices for memory from TrendForce, due to the Chinese New Year holiday, the spot market is experiencing a limited number of released quotes and very few transactions for DRAM. The trading momentum in the NAND Flash spot market has also not shown any improvement. Details are as follows:
DRAM Spot Market:
Chinese OEMs are winding down their operations due to the upcoming Lunar New Year holiday. As a result, the spot market is experiencing a limited number of released quotes and very few transactions. Sellers’ quotes continue to drive the spot price rally, but there is not much actual demand. Although DRAM suppliers are withholding the amount of products going into the spot market, this has a limited effect in terms of sustaining the rally. The average spot price of mainstream chips (i.e., DDR4 1Gx8 2666MT/s) rose by 0.52% from US$1.922 last week to US$1.932 this week.
NAND Flash Spot Market:
Transaction momentum is not yet revitalized from the spot market, with market activities carrying on from that of last week under the absence of buy orders for retail NAND Flash products. Module houses are currently hoping that promotions from Chinese New Year would amplify order dynamics, which are seemingly quite difficult for the time being. The 512Gb TLC wafer spot stayed flat this week at US$3.437.
News
TSMC officially gives the green light to the second fab in Kumamoto, Japan! On January 6th, TSMC, Sony Semiconductor Solutions Corporation (SSS), DENSO Corporation (DENSO), and Toyota Motor Corporation (Toyota) jointly announced further investment in TSMC’s Japanese subsidiary, Japan Advanced Semiconductor Manufacturing, Inc. (JASM).
The collaboration is expected to construct JASM’s second fab in Japan, dedicated to the 6/7-nanometer advanced process. The new facility is expected to commence operations by the end of 2027, with a total investment exceeding USD 20 billion, strongly supported by the Japanese government.
TSMC has stated that in this investment venture with JASM, TSMC, SSS, DENSO, and Toyota hold approximately 86.5%, 6.0%, 5.5%, and 2.0% of JASM shares, respectively. Toyota Motor Corporation is a new major shareholder following this capital increase, indicating its potential involvement in automotive electronics initiatives.
TSMC has further indicated that the construction of JASM’s second fab in Japan is set to commence at the end of 2024. The expansion in production capacity is expected to optimize overall cost structure and supply chain efficiency.
With two fabs in Kumamoto, TSMC anticipates in the press release that JASM’s total monthly production capacity will exceed 100,000 12-inch wafers, offering process technologies ranging from 40nm, 22/28nm, 12/16nm, to 6/7nm for automotive, industrial, consumer, and high-performance computing (HPC) applications. Capacity planning may be further adjusted based on customer demand.
For JASM’s first fab, it is planned to commence production by the end of the year. The initial facility, costing USD 8.6 billion, received subsidies of JPY 478 billion (approximately USD 3.23 billion) from the Japanese government.
The primary process of the first fab are 22/28nm and 12/16nm, with a monthly production capacity of around 50,000 12-inch wafers. Located in Kikuyo-cho, Kikuyo-gun, Kumamoto Prefecture, Kyushu, construction of the facility was announced in November 2021, ground was broken in April 2022, and construction was completed within two years.
JASM’s first fab is set to open on February 24, 2024, with mass production scheduled by the end of the year. The facility is a joint venture between Taiwan and Japan, with TSMC holding the majority of shares, Sony Semiconductor Manufacturing Corporation (SSMC) of Japan holding approximately 20%, and Toyota Group’s DENSO holding about 10%.
Read more
Insights
In late December 2023, reports surfaced indicating OpenAI CEO Sam Altman’s intention to raise funds to construct a semiconductor plant, ensuring a secure supply of AI chips.
According to a report from the Washington Post on January 24, 2024, Sam Altman has engaged with US congressional members to discuss the construction of the semiconductor plant, including considerations of timing and location, highlighting his increasingly fervent ambition to establish the facility.
TrendForce’s Insights:
The rapid emergence of AI-generated content (AIGC) undoubtedly stood out as a highlight of 2023, closely tied to the quality and efficiency of the large language models (LLMs) used. Take OpenAI’s ChatGPT, for instance, which employs the GPT-3.5 model released in 2020. With 175 billion training parameters, it surpasses its predecessor, GPT-2, by over 100 times, itself being over 10 times larger than the initial GPT from 2018.
In pursuit of better content quality, diversified outputs, and enhanced efficiency, the continuous expansion of model training parameters becomes an inevitable trend. While efforts are made to develop lightweight versions of language models for terminal devices, the cloud-based AI computing arena anticipates a continued expansion of language model training parameters, moving towards the “trillion” scale.
Due to the limited growth rate of AI chip performance, coping with the rapidly increasing model training parameters and the vast amount of data generated by the flourishing development of cloud-based AIGC applications inevitably requires relying on more AI chips. This situation continues to exert pressure on the chip supply chain.
Given that the demand for AI computing is escalating faster than the growth rate of chip performance and capacity, it’s understandable why Sam Altman is concerned about chip supply.
The construction of advanced process fabs is immensely costly, with estimates suggesting that the construction cost of a single 3nm fab could amount to billions of dollars. Even if Sam Altman manages to raise sufficient funds for plant construction, there remains a lack of advanced semiconductor process and packaging technology, not to mention capacity, yield, and operational efficiency.
Therefore, it is anticipated that Sam Altman will continue to seek collaboration with sfoundries to achieve his factory construction goal.
Looking at foundries worldwide, TSMC is undoubtedly the preferred partner. After all, TSMC not only holds a leading position in advanced processes and packaging technologies but also boasts the most extensive experience in producing customized AI chips.
While Samsung and Intel are also suitable partners from a localization perspective, considering factors like production schedules and yield rates, choosing TSMC appears to be more cost-effective.
(Photo credit: OpenAI)