Insights
As software and hardware technologies improve in the automotive industry, cars now have an increasing number of smart features in response to the demand for user friendliness; for instance, the Car2Home ecosystem was created as a natural extension of V2X (vehicle-to-everything) technology. Advances in automotive systems and technologies, however, do little to assuage prospective car buyers’ fears of instant depreciation and maintenance fees, which are both justified and frequently parroted by existing owners.
Recent years, however, have seen the emergence of a new technology known as OTA (over-the-air) that can at least address car buyers’ maintenance-related worries. Automakers can fix software issues in the car with OTA updates, thus saving the driver the time and effort it takes to perform a factory maintenance. Simply put, OTA is a cloud-based service that allows automakers to perform a host of actions, including software/firmware updates, OS upgrade, issue fixing, and security patches, through a cloud-network-car connection.
As such, OTA technologies are highly dependent on data encryption, decryption, and transmission, meaning OTA services involve not only software and cloud services vendors, but also cybersecurity companies as well. According to TrendForce’s investigations, about 72% of new cars sold in 2025 will be OTA-enabled vehicles thanks to advancements in V2X, automotive electronic/electrical architectures, and intra-vehicle communications.
OTA pioneer Tesla kicked off its OTA strategies in 2012
Tesla is perhaps the impetus responsible for the surge in OTA viability in the automotive industry. Elon Musk believes that cars should be appreciated, as opposed to depreciating, assets for the consumer. As part of that belief, all Tesla models are capable of OTA updates of software and firmware, reflected in Tesla’s revenues from “service and other”, which saw yearly growths from 2016 to 2020 (Tesla’s 2020 earnings from “service and other” alone surpassed US$2.4 billion). Therefore, Tesla’s sales volume will remain the key to the market size and penetration rate of OTA technology.
Other automakers, such as BMW, Mercedes-Benz, GM, Ford, Toyota, and Volkswagen, also began rolling out OTA updates in their models from 2015 to 2020, although it wasn’t until the year 2020 did most of these companies perform OTA updates on any appreciable scale. Furthermore, most OTA updates were software updates as opposed to firmware updates (for ADAS and powertrain functionalities), since issuing firmware OTA updates still remains a major issue for automakers at the moment.
TrendForce also indicates that, should automakers wish to improve automotive functionalities with OTA updates, they would need to completely overhaul their cars’ electronic and electrical architectures. In this light, one of the prerequisites of performing functional OTA updates is the availability of compatible hardware in cars.
For instance, in order to activate LiDAR functionality, automakers must first equip a car with LiDAR hardware. Once self-driving technology matures to the point when it is deemed appropriate to be enabled on a given car, then automakers can activate the necessary LiDAR functionality with OTA updates.
Of course, all of this hinges on whether automakers are willing to bear the cost of preemptively equipping their cars with the necessary hardware, as well as whether they have any faith in the success of new services/functions to be activated by OTA in the future. Most importantly, however, if consumers were uninterested in these services and functions, then automakers would have no way of recouping their preemptive investments in the aforementioned hardware.
On the whole, despite most automakers’ planned to roll out the capability of OTA updates to their vehicles, they still face bottlenecks in performing OTA updates safely and providing useful upgrades for users. Only by overcoming these hurdles will automakers effectively improve the driving experience and convince car owners as well as prospective buyers that OTA is a worthy investment.
(Cover imgae source: Pixabay)
Press Releases
Global sales of NEV (new energy vehicles, which include both BEV and PHEV) skyrocketed in the final two months of 2020, with various models setting historical sales records, according to TrendForce’s latest investigations. TrendForce estimates total NEV sales for 2020 at 2.9 million units, a 43% increase YoY, and further expects yearly sales to reach 3.9 million units in 2021. However, as the current shortage of automotive chips has had a considerable impact on the auto industry, some uncertainties still exist in the forecast of EV sales.
With regards to the BEV market, Tesla primarily focused on marketing the Model 3 as its key model for 2020. The automaker took leadership position with a 24.5% market share last year, while the Model Y is expected to be key to securing its continued leadership in 2021 primarily because China has issued a sales permit allowing the Model Y to be exempt from purchase tax. Furthermore, Tesla was able to catch its competitors off guard by discounting Model Y prices by 30% on the first day of 2021. Volkswagen took second place in the rankings due to not only the excellent market reception of the e-Golf, but also the remarkable sales figures set by the ID.3 in 2H20, which helped Volkswagen stabilize its market share. Incidentally, as the ID.4 is set to hit the market later on, it is expected to make meaningful contributions to Volkswagen’s overall EV sales in 2021 instead of 2020.
BYD derives its competitive advantage from having a comprehensive model lineup. The Chinese company comfortably took third place with a 6.4% market share. Conversely, fourth-ranked Wuling Hongguang became the dark horse of 2020 by fielding a single EV model, the Hongguang Mini. Not only was the Hongguang Mini attractively priced, but the Chinese government also made a heavy push for NEV sales in China’s rural areas. Both of these factors allowed the Hongguang Mini to become one of the global top sellers within six months of its release. Hot on the heels of Wuling Hongguang is Renault, which took fifth place in the ranking. Renault was able to score a 5.6% market share thanks to its longstanding best seller ZOE. Although other models, including the Nissan Leaf and Hyundai Kona, also posted remarkable sales performances last year, their respective automakers did not place on the top five list because these automakers each had total EV sales that fell short of the five automakers on the list.
On the other hand, the top PHEV manufacturers were neck and neck in terms of ranking by market share. BMW and Mercedes-Benz each possessed a 13% market share, followed by Volvo with 12%. Fourth-ranked Volkswagen and fifth-ranked Audi registered a 10% market share and 6% market share, respectively.
TrendForce indicates that China and Europe are perfect examples of EV markets propelled by government policies. For instance, European automakers have adopted a proactive position to expand their EV lineups as a result of the stringent emissions standards set by the EU, and these automakers have subsequently been aiming to achieve zero carbon emissions or increase the share of EVs in their total vehicle sales. Apart from China and Europe, the US is yet another market where policies may have a positive effect on EV sales. After winning the 2020 presidential election, Biden is now set to launch his clean energy proposal, which includes replacing the US government’s existing fleet with EVs, removing the previously set ceiling on federal tax credits for EV purchases, and offering consumer tax incentives to replacing their conventional fossil fuel vehicles with EVs, among other actions. If these proposed actions were eventually implemented, TrendForce believes they would be able to drive up EV sales in the US.
Press Releases
Not only did automotive market take a downward turn starting in 2018, but the severe impact of the COVID-19 pandemic in 2020 also led to noticeably insufficient procurement activities from major automotive module suppliers, according to TrendForce’s latest investigations. However, as the automotive market is currently set to make a recovery, TrendForce expects yearly vehicle sales to increase from 77 million units in 2020 to 84 million units in 2021.
At the same time, the rising popularity of autonomous, connected, and electric vehicles is likely to lead to a massive consumption of various semiconductor components. Even so, since most manufacturers in the automotive supply chain currently possess a relatively low inventory, due to their sluggish procurement activities last year in light of weak demand, the discrepancies in the inventory levels of various automotive components, along with the resultant manufacturing bottleneck, have substantially impaired automakers’ capacity utilization rates and, subsequently, vehicle shipments.
The recent shortage situation in the IC supply chain has gradually extended from consumer electronics and ICT products to the industrial and automotive markets. In the past, manufacturers in the automotive semiconductor industry were primarily based on IDM or fab-lite business models, such as NXP, Infineon, STMicroelectronics, Renesas, ON Semiconductor, Broadcom, TI, etc. As automotive ICs generally operate in wide temperature and high voltage circumstances, have relatively long product lifecycle, and place a heavy demand on reliability as well as longevity support, it is more difficult for the industry to alternatively transition its production lines and supply chains elsewhere.
Automotive semiconductor remains in shortage as production capacities remain fully loaded across the global foundry industry
Nevertheless, given the current shortage of production capacities across the foundry industry, wafer capacities allocated to automotive semiconductor components have been noticeably crowded out by other products. Some of these examples include automotive MCU and CIS manufactured in 12-inch fabs, as well as MEMS, Discrete, PMIC, and DDI products manufactured in 8-inch fabs. TrendForce indicates that automotive semiconductor products manufactured at the 28nm, 45nm, and 65nm nodes in 12-inch fabs are suffering the most severe shortage at the moment, while production capacities at 0.18µm and above nodes in 8-inch fabs have also been in long queue by other products.
As in-house IDM fabrications have relatively high CAPEX, R&D expense, and operating overhead, automotive IC vendors have in recent years outsourced some of their products to TSMC, GlobalFoundries, UMC, Samsung, VIS, Win Semiconductor and so on. In particular, TSMC specifically indicated during its 4Q20 earnings conference that wafer starts for automotive semiconductors reached rock bottom in 3Q20, while additional orders began arriving in 4Q20. As such, the company is currently considering allocating some of its production capacities from logic ICs to specialty foundry, in order to meet sudden demand from its long-term customer relationship.
For more information on reports and market data from TrendForce’s Department of Semiconductor Research, please click here, or email Ms. Latte Chung from the Sales Department at lattechung@trendforce.com
Press Releases
The LiDAR market encompasses such applications as ADAS, autonomous vehicles, industries, deliveries, and smart cities; while these applications are estimated to have driven the LiDAR market to reach US$682 million in revenue in 2020, total LiDAR revenue is projected to further expand to $2.932 billion in 2025, a 34% CAGR, according to TrendForce’s latest investigations.
TrendForce indicates that, with regards to automotive LiDAR applications (ADAS and autonomous vehicles), automakers have continued to release NEVs in spite of the COVID-19 pandemic’s negative impact on the global automotive industry in 2020. Furthermore, these automakers are also equipping ADAS on high-end conventional gasoline vehicles and NEVs alike. As an essential component in SAE levels 4-5 autonomous vehicles, LiDAR systems are used by automakers to both build their databases and increase vehicle location accuracy. In addition to the aforementioned vehicles, automotive LiDARs are also featured in autonomous buses, robo-taxis, and self-driving trucks. Total automotive LiDAR revenue is expected to reach $2.434 billion in 2025. At the moment, major automotive LiDAR suppliers include Velodyne, Valeo, Quanergy Systems, Inc., ibeo, Continental, LeddarTech, INNOVIZ, HESAI, LeiShen, and Luminar, while major LiDAR laser suppliers include OSRAM, Laser Components, Excelitas, and Hamamatsu.
With regards to delivery and logistics, the rising popularity of e-commerce has prompted online vendors and delivery companies to lower their last-mile delivery costs by performing deliveries with autonomous delivery robots, bicycle couriers, and self-driving trucks, thereby leading to an increased demand for delivery robots with self-navigation and autonomous decision-making capabilities. Major e-commerce companies that have been promoting these delivery methods include Alibaba, Amazon, FedEx, and Jingdong (also known as JD.com).
Likewise, the growth of the industrial automation market has been lackluster due to the pandemic, with most companies having deferred their previous expansion plans in consideration of budgets, although certain companies wary of potential future shortages in human labor are investing additional capital into industrial automation development against the market downtrend. Having undergone various deferred developments throughout 2020, the European and North American markets are expected to see surging demand for industrial automation applications starting in 3Q21. On the whole, TrendForce forecasts a $469 million revenue for the industry and delivery LiDAR markets in 2025. Major LiDAR suppliers in these markets currently include SICK, Hokuyo, OMRON, and Velodyne. With increasing market demand on ADAS, autonomous vehicles and industrial automation, LiDAR market value will be encouraged by rising LiDAR usage volume.
For more information on reports and market data from TrendForce’s Department of Optoelectronics Research, please click here, or email Ms. Grace Li from the Sales Department at graceli@trendforce.com