News
The Tokyo Motor Show, which recently opened in Japan, has garnered global attention from the automotive industry, particularly regarding EV technology, seen as the future of the automotive sector. Just like Toyota, a leader in the Japanese automotive industry, Nissan has showcased its ongoing development of Advanced Solid-State Battery (ASSB) technology at the event.
According to Nissan, the ASSB technology promises to provide double the energy density when compared to conventional liquid lithium-ion batteries, representing a significant milestone in battery innovation. Additionally, it is estimated that vehicles equipped with ASSB will experience a substantial reduction in charging times, taking only one-third of the current duration.
This development aims to address one of the fundamental challenges faced by EV users, making longer trips more convenient and practical while enhancing their overall confidence and enjoyment in electric vehicle ownership.
Kazuhiro Doi, Vice President of Nissan’s research division, believes that this technology could propel Nissan’s next generation of electric vehicles to a new level.
What’s particularly intriguing is that sports cars or supercars can utilize smaller and lighter battery packs, thereby improving handling, braking, and acceleration. Furthermore, according to Mydrivers, since ASSB batteries can operate normally in the range of room temperature to 100°C, they do not require a dedicated cooling system.
Currently, the ASSB technology is progressing according to Nissan’s previously announced plan. The first experimental production facility is still scheduled to commence operations next year, and the first mass-produced vehicle model utilizing ASSB technology is still expected to be launched in 2028.
(Photo credit: Nissan’s Facebook)
Press Releases
As the global automotive industry picks up the pace of electrification, there will be a corresponding increase in the demand for nickel, which is a key ingredient for automotive batteries, according to TrendForce’s latest investigations. Incidentally, Indonesia has recently made gradual announcements indicating that it intends to terminate the export of such unprocessed ores as nickel, copper, and tin, and this restriction will likely have an impact on the global supply chains in which these materials are used. Indonesia possesses the world’s highest volume of nickel reserves (which refer to the total availability of nickel in the country), at 21 million tonnes, representing more than 20% of the global total. With regards to nickel production (which refers to the actual amount of nickel that is mined), on the other hand, Indonesia accounts for more than 30% of the global total. As such, Indonesia is the primary source of raw materials for NEV (new energy vehicle) batteries manufactured by countries such as China.
TrendForce further indicates that, as a key upstream material for EV battery manufacturing, nickel is primarily used for raising the energy density of NCM batteries. As EV battery development progresses towards increasingly high energy densities, the direction of cathode development has gradually trended towards nickel-rich NCM as the mainstream. Hence, the consumption of nickel in EV battery cathodes has been undergoing a steady growth.
As the volume of NEV sales increases, so has the installation volume of EV batteries. Take the Chinese automotive market as an example; cumulative NEV sales for the January-July period this year surpassed the annual sales volume for 2020. TrendForce expects annual NEV sales in China to surpass 3.3 million units this year (including both heavy and light vehicles), representing an over 140% YoY growth. Likewise, cumulative EV battery installation in China for the January-October period reached 107.5 GWh, a 168.1% YoY increase, while automotive NCM battery installation reached 54.1 GWh, accounting for 50.3% of the total EV battery installation. These figures would suggest that the growth of the NEV market in China has generated a definite increase in the demand for nickel.
TrendForce believes that the NEV market will continue to expand its demand for battery materials, including primarily nickel, for several reasons: First, the penetration rate of NEVs has been rising at an increasingly rapid pace. Second, EV cathode development has been trending towards a nickel-rich composition. Finally, nickel-rich NCM materials are suitable for fulfilling the automotive market’s demand for high energy density batteries. Indonesia’s decision to terminate the export of certain unprocessed ores may not have an impact on the global supply chains in the short run. However, going forward, this decision will likely transform the supply situation of the nickel industry, force battery manufacturers or nickel chloride suppliers to establish facilities in Indonesia, and eventually raise the added value of products related to the Indonesian nickel industry.
Nevertheless, whether the production capacity generated by the establishment of facilities in Indonesia can satisfy the market demand in time will depend on not only the quality of Indonesia’s infrastructures and electricity supply, but also domestic political environments, availability of labor force, and other external factors. Therefore, TrendForce believes that, in the long run, Indonesia’s export restrictions on raw materials will likely exacerbate the shortage of nickel and subsequently of EV batteries, thereby potentially hindering the rapid advancement of the EV industry.
For more information on reports and market data from TrendForce’s Department of Green Energy Research, please click here, or email Ms. Faye Wang from the Sales Department at fayewang@trendforce.cn
Press Releases
As the pace of electrification accelerates in the global automotive market, and various governments worldwide implement subsidy policies that encourage consumer EV purchases, sales of new energy vehicles(NEV, which includes BEV/PHEV/FCV)are continuing to rise as well. NEV sales for 2021 are projected to reach 4.35 million units, a 49% increase YoY.
Due to the vast scale of the Chinese market, as well as domestic policies favorable for the growth of BEV/PHEV/FCV, various NEV brands have quickly emerged in China in recent years, such as BYD Auto, Aion(formerly GAC NE), and BAIC BJEV. At the market’s peak, NEV manufacturers in China once numbered in the hundreds, although that number has since dwindled somewhat, as the intense competition resulted in declining sales and market shares for many automakers, including BAIC and JAC.
Four rising stars among emerging NEV manufacturers in China include NIO, XPeng, Lixian(or Li Auto), and Weltmeister, all of which have been shipping tens of thousands of mass production vehicles each year. In particular, while NIO, XPeng, and Lixiang registered significant growths in the past few years, Weltmeister also ranked number two in terms of sales in 2019, though it fell to fourth place in 2020 as it delivered fewer vehicles compared to the top three competitors last year.
In light of the aforementioned four automakers’ current expansions, TrendForce has summarized several key aspects of their growths, including the following:
1. Autonomous Driving Technologies: Autonomous driving is not only part and parcel of these automakers’ core competencies but also a reflection of what consumers and investors expect of the automotive industry. In pursuing advanced autonomous driving technologies, the four automakers have been adopting increasingly powerful processors and computing platforms, with Nvidia being the most common partner among emerging NEV manufacturers. Remarkably, XPeng stands out as the only player making a noticeable effort to develop in-house chips.
2. LiDAR: LiDAR is integrated into an increasing number of vehicles in response to the growing demand for advanced self-driving functionalities. Although LiDAR remains out of reach for vehicles in certain price segments, autonomous driving sensors including LiDAR are no longer limited to flagship models since new NEV models’ E/E architectures are expected to be compatible with OTA updates.
LiDAR sensor demand from NEV manufacturers has significantly increased because only by pre-installing hardware ahead of time in their vehicles can automakers enable autonomous driving functionalities as a paid subscription service through OTA updates later on.
3. Battery-swapping: Battery-swapping are relatively attractive for the Chinese NEV industry for several reasons: First, battery-swappable vehicles are excluded from China’s NEV subsidy limits*; second, automakers can now afford to lower the retail price of vehicles by turning batteries into a subscription service; finally, it’s much convenience for driver because battery swapping is faster than battery charging.
For instance, NIO’s entire NEV lineup is compatible with both battery charging and battery swapping. NIO has been pushing its BaaS(battery as a service)and second-gen battery swap stations since 2020. On the other hand, Weltmeister and XPeng are also making their respective battery-swapping strategies.
4. Capacity Expansion and Overseas Strategies: The aforementioned four automakers all place a heavy emphasis on both expanding their production capacities and growing their overseas market shares. Their capacity expansion efforts include building in-house production lines, acquiring other facilities, or jointly funding automotive production with OEMs/ODMs. Regarding overseas expansion, their primary destination is the European market, which is relatively favorable to NEVs.
For instance, NIO and XPeng choose Norway as their first target market in Europe. However, while the European automotive market is conducive to the growth of NEVs in terms of both policies and cultures, competition among automakers is also correspondingly intense. In addition, most European countries prefer either domestic brands or other European brands. Therefore, Chinese automakers must prioritize gaining consumer trust via establishing a trustworthy brand image.
*China’s subsidies for NEV purchases are restricted to NEVs with a retail price of CN¥300,000 and under. However, NEVs with swappable batteries do not fall under this restriction.
(Cover image source: Unsplash)