News

ASE, Amkor, UMC and Samsung Getting a Slice of the CoWoS Market from AI Chips, Challenging TSMC



AI Chips and High-Performance Computing (HPC) have been continuously shaking up the entire supply chain, with CoWoS packaging technology being the latest area to experience the tremors.

In the previous piece, “HBM and 2.5D Packaging: the Essential Backbone Behind AI Server,” we discovered that the leading AI chip players, Nvidia and AMD, have been dedicated users of TSMC’s CoWoS technology. Much of the groundbreaking tech used in their flagship product series – such as Nvidia’s A100 and H100, and AMD’s Instinct MI250X and MI300 – have their roots in TSMC’s CoWoS tech.

However, with AI’s exponential growth, chip demand from not just Nvidia and AMD has skyrocketed, but other giants like Google and Amazon are also catching up in the AI field, bringing an onslaught of chip demand. The surge of orders is already testing the limits of TSMC’s CoWoS capacity. While TSMC is planning to increase its production in the latter half of 2023, there’s a snag – the lead time of the packaging equipment is proving to be a bottleneck, severely curtailing the pace of this necessary capacity expansion.

Nvidia Shakes the foundation of the CoWoS Supply Chain

In these times of booming demand, maintaining a stable supply is viewed as the primary goal for chipmakers, including Nvidia. While TSMC is struggling to keep up with customer needs, other chipmakers are starting to tweak their outsourcing strategies, moving towards a more diversified supply chain model. This shift is now opening opportunities for other foundries and OSATs.

Interestingly, in this reshuffling of the supply chain, UMC (United Microelectronics Corporation) is reportedly becoming one of Nvidia’s key partners in the interposer sector for the first time, with plans for capacity expansion on the horizon.

From a technical viewpoint, interposer has always been the cornerstone of TSMC’s CoWoS process and technology progression. As the interposer area enlarges, it allows for more memory stack particles and core components to be integrated. This is crucial for increasingly complex multi-chip designs, underscoring Nvidia’s intention to support UMC as a backup resource to safeguard supply continuity.

Meanwhile, as Nvidia secures production capacity, it is observed that the two leading OSAT companies, Amkor and SPIL (as part of ASE), are establishing themselves in the Chip-on-Wafer (CoW) and Wafer-on-Substrate (WoS) processes.

The ASE Group is no stranger to the 2.5D packaging arena. It unveiled its proprietary 2.5D packaging tech as early as 2017, a technology capable of integrating core computational elements and High Bandwidth Memory (HBM) onto the silicon interposer. This approach was once utilized in AMD’s MI200 series server GPU. Also under the ASE Group umbrella, SPIL boasts unique Fan-Out Embedded Bridge (FO-EB) technology. Bypassing silicon interposers, the platform leverages silicon bridges and redistribution layers (RDL) for integration, which provides ASE another competitive edge.

Could Samsung’s Turnkey Service Break New Ground?

In the shifting landscape of the supply chain, the Samsung Device Solutions division’s turnkey service, spanning from foundry operations to Advanced Package (AVP), stands out as an emerging player that can’t be ignored.

After its 2018 split, Samsung Foundry started taking orders beyond System LSI for business stability. In 2023, the AVP department, initially serving Samsung’s memory and foundry businesses, has also expanded its reach to external clients.

Our research indicates that Samsung’s AVP division is making aggressive strides into the AI field. Currently in active talks with key customers in the U.S. and China, Samsung is positioning its foundry-to-packaging turnkey solutions and standalone advanced packaging processes as viable, mature options.

In terms of technology roadmap, Samsung has invested significantly in 2.5D packaging R&D. Mirroring TSMC, the company launched two 2.5D packaging technologies in 2021: the I-Cube4, capable of integrating four HBM stacks and one core component onto a silicon interposer, and the H-Cube, designed to extend packaging area by integrating HDI PCB beneath the ABF substrate, primarily for designs incorporating six or more HBM stack particles.

Besides, recognizing Japan’s dominance in packaging materials and technologies, Samsung recently launched a R&D center there to swiftly upscale its AVP business.

Given all these circumstances, it seems to be only a matter of time before Samsung carves out its own significant share in the AI chip market. Despite TSMC’s industry dominance and pivotal role in AI chip advancements, the rising demand for advanced packaging is set to undeniably reshape supply chain dynamics and the future of the semiconductor industry.

(Source: Nvidia)