Rapidus


2024-02-01

[News] Intensified Competition in the Semiconductor Industry for 2nm Technology Dominance, Potentially Reshaping the Global Foundry Market

The competition for dominance in 2nm semiconductor technology has intensified at the beginning of 2024, marking a crucial battleground among global foundry companies.

As per a report from IJIWEI, major foundry enterprises such as Samsung Electronics, TSMC, and Intel are set to commence mass production adopting 2nm process starting this year. Consequently, the fierce competition for supremacy in 2nm technology is expected to escalate from 2025 onwards. Currently, the most advanced production technology globally is at the 3nm level.

  • TSMC

TSMC’s 2nm products will be manufactured at the Fab 20 in the Hsinchu Science Park in northern Taiwan and at a plant in Kaohsiung.

The Fab 20 facility is expected to begin receiving related equipment for 2nm production as early as April, with plans to transition to GAA (Gate-All-Around) technology from FinFET for 2nm mass production by 2025.

During TSMC’s earnings call on January 18th, TSMC revealed that its capital expenditure for this year is expected to fall between USD 28 billion and 32 billion, with the majority (70% to 80%) allocated to advanced processes. This figure is similar to that of 2023 (USD 30.4 billion), indicating stable investment to ensure its leading position in 2nm technology.

  • Intel

After announcing its re-entry into the foundry business, Intel is actively advancing its foundry construction efforts. The plan includes the introduction of the Intel 20A (equivalent to 2nm) process in the first half of 2024 and the Intel 18A (1.8nm) process in the second half of the year. It is understood that the Intel 18A process will commence test production as early as the first quarter of this year.

Intel’s 2nm roadmap is more ambitious than originally anticipated, being accelerated by over six months. In response to criticisms of its “overly ambitious” plans, Intel swiftly began procuring advanced Extreme Ultraviolet (EUV) equipment.

  • Samsung Electronics

Samsung Electronics has devised a strategy to gain an advantage in the more advanced process war through its Gate-All-Around (GAA) technology. Currently, it is mass-producing the first-generation 3nm process based on GAA (SF3E) and plans to commence mass production of the second-generation 3nm process this year, significantly enhancing performance and power efficiency.

Regarding the 2nm process, per a report from Nikkei, Samsung plans to start mass production for mobile devices in 2025 (SF2) and gradually expand to high-performance computing (HPC) in 2026 and automotive processes in 2027.

Currently, Samsung Electronics is producing GAA products for the 3nm process at its Hwaseong plant and plans to manufacture products for both the 3nm and 2nm processes at its Pyeongtaek facility in the future.

  • Rapidus

Rapidus, a chip manufacturing company supported by the Japanese government, is expected to trial-adopt 2nm process at its new plant by 2025 and begin mass production from 2027.

If Rapidus’ technology is validated, the global foundry market may expand beyond the Taiwan-Korea duopoly to include Taiwan, Korea, the United States, and Japan.

The technology competition to become a “game-changer” ultimately depends on the competition for customers. It’s rumored that TSMC holds a leading position in the 2nm field, with Apple speculated to be its first customer for the 2nm process. Graphics processing giant NVIDIA is also considered a major customer within TSMC’s client base.

According to TrendForce data as of the third quarter of 2023, TSMC’s revenue share accounted for a dominant 57.9%, with Samsung Electronics trailing at 12.4%, a gap of 45.5 percentage points.

However, Samsung Electronics is not sitting idly by. With continuous technological investment, Samsung’s foundry customer base grew to over 100 in 2022, a 2.4-fold increase from 2017. The company aims to expand this number to around 200 by 2028.

Particularly, Samsung’s early adoption of GAA technology is expected to give it an advantage in achieving early production volumes for advanced processes.

Read more

(Photo credit: TSMC)

Please note that this article cites information from IJIWEI and Nikkei.

2023-12-30

[Tech Recap and Glimpse 5-2] Battle for Advanced Semiconductor Manufacturing

Examining the dynamics of advanced semiconductor manufacturing, from research and development to the competition for cutting-edge equipment and securing orders, major players such as TSMC, Samsung, and Intel are constantly in action. Simultaneously, newcomer Rapidus is making a strong entrance. The competition for advanced processes is set to intensify in 2024.

Amidst the global chipmakers’ race to develop 2-nanometer processes, TSMC has once again emerged victorious by securing Apple’s order. The upcoming iPhone 17 Pro, expected to be released in 2025, reportedly will feature TSMC’s 2-nanometer chip. Samsung is also gearing up to launch a 2nm prototype in 2024, reportedly offering discounted prices with the aim of attracting customers such as NVIDIA.

However, industry insiders reveal that TSMC is on the verge of finalizing its clients for future 3nm and 2nm technologies, apart from Apple, AMD, NVIDIA, Broadcom, MediaTek, and Qualcomm are among the clients for TSMC’s 3nm and 2nm processes. The changes in the customer portfolio of TSMC, Samsung, and Intel in 2024 are bound to be the focal point throughout the year.

(Image: TSMC)

2023-12-15

TrendForce’s First Seminar in Japan, Spotlights TSMC, Rapidus and Japanese Semiconductor Revitalization

As the Japanese government injects substantial funds to revitalize its semiconductor industry, the dynamics of the Japanese semiconductor industry have been a global focus. TrendForce, during this year’s SEMICON Japan, organized its first overseas industry-focused information seminar, delving into the global semiconductor, optoelectronics, and electric vehicle industries, with a particular focus on the dynamics and strategies of the Japanese market and companies. The event attracted over a hundred participants from Japanese technology industry.

The seminar, opened by TrendForce CEO Kevin Lin, under the theme of “the era of challenges,” served as a commentary on the future development of the technology industry in the coming years. Lin pointed out that global technological industries, influenced by geopolitical factors, are experiencing a trend of supply chain restructuring. He also highlighted China’s expansion in the semiconductor, electric vehicle, and downstream supply chains, reshaping the global supply chain landscape—an aspect requiring global attention.

During the seminar, TrendForce’s Senior Research Vice President, Ken Kuo, presented an analysis of the global memory and AI server market. He noted that after a year and a half of adjustments, prices in the DRAM and NAND markets started to rise across the board in the fourth quarter, driven primarily by robust growth in AI. This trend is expected to continue into the next year.

Beyond AI servers, the introduction of technologies such as Microsoft’s Copilot, as well as AI PCs and AI smartphones, is poised to be a growth driver next year. In terms of AI chip shipments, NVIDIA is projected to maintain its dominance, with an estimated 1.5 million units shipped this year and an anticipated 100% growth next year.

The semiconductor foundry market is expected to recover in 2024.

The recovery of the semiconductor market in 2024 was a major focus for participants. TrendForce’s analyst Joanne Chiao mentioned that as supply chain inventory pressures gradually ease, the semiconductor foundry industry is expected to experience a recovery in 2024, driven by TSMC’s advanced processes and inventory replenishment momentum, with a projected growth of 7%.

In light of geopolitics, , semiconductor foundry supply chains are undergoing restructuring. In 2023, Taiwan is expected to account for approximately 46% of global semiconductor foundry capacity, followed by China at 26%, South Korea at 12%, the United States at 6%, and Japan at 2%. With the drive from subsidy policies in China and the United States to increase local production capacity, by 2027, Taiwan and South Korea’s production capacity shares are expected to converge to 41% and 10%, respectively.

Meanwhile, Japan is actively implementing subsidy policies to support local company Rapidus and attract Taiwan’s TSMC and PSMC to establish facilities, aiming to secure a place in the semiconductor foundry market.

The introduction of Apple Watch with Micro LED is expected in 2026, with estimated display costs 2.5-3 times higher than OLED.

TrendForce’s Senior Research Vice President, Eric Chiou, analyzed Apple’s progress in adopting new display technologies during the display technology session. He mentioned that the next-generation Apple Watch panel would use Micro LED as the display technology, with a size larger than the current Apple Watch Ultra at 2.12 inches.

The product will have two key suppliers: German LED giant ams OSRAM, which will exclusively supply Micro LED chips smaller than 10x10um, and South Korean panel manufacturer LG Display, responsible for the chip mass transfer engineering in addition to providing LTPO glass backplates.

Chiou pointed out that the adoption of small-sized chips inherently helps compress costs. Considering Apple’s strong bargaining power in the supply chain, he estimated that when the product is launched in 2026, the cost of the Micro LED display panel could be controlled below $120, equivalent to 2.5 to 3 times the current price of OLED panels—a reasonable range for a new technology.

Moreover, with Apple’s outstanding ability to integrate new technologies and specifications, there is an expectation of achieving million-unit-level shipments in the first year of launch, injecting abundant vitality into the demand for Micro LED chips and the overall industry’s development.

China’s EV expansion brings impact to the global automotive industry.

In 2023, China became the world’s primary exporter of automobiles, prompting the global automotive industry to recognize that competition with Chinese automakers will extend from the domestic market to the global market. TrendForce analyst Caroline Chen highlighted in her speech that the most significant threat to international automakers is China’s advantage in EV( including BEV, PHV, FCV).

She emphasized that due to China’s early development of EVs, it has established a complete supply chain, particularly in the proactive development of power battery production capacity and upstream materials. EVs account for over a quarter of China’s passenger car exports.

On the other hands, with a nearly 60% market share in the Southeast Asian market, Chinese automakers gradually threaten Japanese automakers’ long-term dominance in the Southeast Asian automotive market.

She believes that as Chinese automakers expand into the international market, Japanese automakers should not only accelerate the development of new energy vehicles but also leverage their long-accumulated brand value and well-established maintenance systems as core competitive advantages. Additionally, maintaining leadership positions in semiconductor and chemical materials is a strategy for sustained investment to consolidate their influence in the automotive industry.

2023-12-14

[News] SEMICON Japan Kicks Off, Global Attention on Japan’s Semiconductor Revitalization

SEMICON Japan, commenced on the 13th, with key participants including Rapidus, tasked with revitalizing advanced semiconductor manufacturing in Japan, major equipment manufacturers Advantest, Japanese material giants Kyocera, Sekisui Chemical, and the Semiconductor Equipment Association of Japan (SEAJ).

The event featured grand exhibits and keynote speeches from top executives of Intel, Applied Materials, and Sony, drawing global participation from semiconductor industry stakeholders.

This year, SEMICON Japan centered its theme around “Accelerate the Future. Shape the Next Era,” conveying the vision of advancing society into a new stage with semiconductors that boast higher performance, lower costs, and increased production volumes, contributing to sustainable development.

Also, spurred by the development of generative AI, many exhibitors this year showcased AI, high-speed computing, and high-performance technologies, highlighting a range of technology for artificial intelligence applications and 3D chip packaging.

Advantest, for instance, exhibited its latest equipment developed for the testing of AI and HPC chips, while Rapidus, currently engaged in the development of 2-nanometer technology, presented developments in small chips and other advanced technologies to event attendees.

Despite challenges such as a surge in semiconductor inventory and sluggish end demand causing the industry’s downward cycle this year, Ajit Manocha, President and CEO of SEMI, states that the semiconductor market is cyclical, foreseeing a turning point toward recovery in 2024 and anticipating increased demand for production capacity, new fab constructions, and advanced technologies and solutions in 2025. With this growth, a robust recovery is expected.

On another front, the Japanese government is steadfast in revitalizing the semiconductor industry, making the Japanese market a global focal point. This commitment has once again drawn exhibitors and participants from around the world to SEMICON Japan this year, with organizers expecting attendance to surpass last year, reaching 70,000 participants.

2023-11-20

[News] 1nm Chip Development Rise Competition Among Wafer Foundries for Advanced Processing

The growing importance of advanced processes in wafer foundries is evident, propelled by innovations like AI and high-performance computing. While 3nm chips have entered the consumer market, efforts are underway in wafer foundries to advance to 2nm chips. Recent reports suggest progress in 1nm chips, further fueling the competition among wafer foundries.

2nm Chips: Unveiling in 2025

Anticipated by 2025, the race for 2nm chips is in full swing, with major players like TSMC, Samsung, and Rapidus actively pursuing mass production. TSMC plans to implement GAAFET transistors in its 2nm process by 2025, offering a 15% speed boost and up to a 30% reduction in power consumption compared to N3E, all while increasing chip density by over 15%.

Samsung is on a similar trajectory, planning to unveil its 2nm process by the end of 2025. As report by media in October, Samsung Foundry, said on Semiconductor Expo 2023 in South Korea, has already initiated discussions with major clients, expecting decisions in upcoming future.

Rapidus aims for trial production of 2nm chips in 2025, scaling up to mass production by 2027. Reports in September indicated that ASML plans to establish a technical support hub in Hokkaido, Japan in 2024. Approximately 50 engineers will be dispatched to Rapidus’ ongoing construction site for the 2nm plant, assisting in the setup of EUV lithography equipment on the trial production line, and providing support for factory activation, maintenance, and inspections.

When will 1nm chip arrive?

Apart from 2nm, the industry’s attention turns to 1nm-level chips. According to industry plans, mass production of 1nm-level chips is expected between 2027 and 2030.

Nikkei recently reveals collaboration between Japanese chipmaker Rapidus, Tokyo University, and the French technological research organization Leti to develop foundational technology for 1nm IC design. Talent exchange and technical sharing are slated to begin in 2024, aiming to establish a supply system for indispensable 1nm chip products, crucial for enhancing auto driving and AI performance.

On the other hand, collaborations with IBM for 1nm products are also being considered. The computing performance of 1nm products, anticipated to become mainstream in the 2030s, is expected to surpass 2nm by 10-20%.

TSMC and Samsung are also eyeing 1nm chip development. TSMC’s initial plan to build a 1.4nm process wafer fab in Taiwan faced delays after abandoning the original site selection in October. Samsung aims to launch its 1.4nm process by the end of 2027, with improved performance and power consumption through an increased number of nanosheets per transistor, promising enhanced control over current flow and reduced power leakage.

(Image: TSMC)

  • Page 1
  • 2 page(s)
  • 9 result(s)